

Intermountain Power Project (IPP) Greenhouse Gas (GHG) Reduction Feasibility Study

Presentation of Results
Las Vegas, NV
April 10, 2008

Introductions

Today's Presenters

- Bob Slettehaugh Project Manager/CO₂ Capture
- Andy Byers Regulatory Issues
- Matt Wood Plant Improvements
- Matt Hunsaker Renewable Energy

IP12_002422

B&V-3

Today's Presenters

- Bob Slettehaugh Project Manager/CO₂ Capture
- Andy Byers Regulatory Issues
- Matt Wood Plant Improvements
- Matt Hunsaker Renewable Energy

IP12_002424

Presentation Agenda

- General Overview of Black & Veatch (B&V)
- Key Take-aways
- Project Background
- GHG Emissions Trading Programs (Task 5)
- Efficiency Improvements (Task 1)
- Lunch Break
- Renewable Energy Resources (Tasks 2 & 6)
- Carbon Capture and Sequestration (Tasks 3 & 4)
- Economic Comparisons (Task 5)
- Recommendations and Conclusions

G

B&V.

Please Ask Questions When You Have Them

Black & Veatch Corporation

- Founded in 1915, headquarters in Kansas City
- A leading global engineering, consulting, and construction company
- Focus on infrastructure development in energy, water, information, and government markets
- Employee-owned company with more than 90 offices worldwide
- Over 9,000 Employees Worldwide
- Project Experience in Over 100 Countries on 6 Continents
- \$3.2 Billion in Annual Revenues in 2007

B&V Energy offers a broad range of solutions for a global client base

Palmdale

Weston

- Coal Plants
- Gas Turbines
- Combined Cycle
- Gasification / IGCC
- Nuclear
- Renewables
- AQCS
- Energy Services
- Power Delivery
- Substations
- Sulfur Recovery
- Natural Gas Processing
- LNG

Jefferson-Martin

Costa Azul

Key Results and Conclusions

- IPP is a Best-in-Class Facility
- GHG Emissions Trading Scheme (ETS) Not **Fully Defined**
- Significant Reductions of CO₂ from IPP Require Carbon Capture and Sequestration (CCS)
- Large Scale Capture Ready 2012-2015
- Large Scale Sequestration Ready 2015-2020
- Viable Projects Available Today to Lower GHG Footprint

Project Background

Project Scope

- Agency (IPA) and Southern California Request from Intermountain Power Public Power Authority (SCPPA)
- IPP GHG Reduction Feasibility Study
- Pre-Feasibility Level Study
- Work to begin in October 2007
- Final in April 2008

Purpose

Energy Commission's (CEC) GHG Emission Performance Standard. capture CO₂ emissions from IPP coal fired Units 1 and 2. The ultimate goal, if achievable, is to Evaluate ways to reduce and/or Units 1 and 2 to meet California reduce CO₂ emissions from

Intermountain Power Project

- Located near Delta, Utah
- Has two PC units with approximately 1,800 MW total capacity
- Engineered by Black & Veatch in the late 1980s
- Delivers power to 36 utilities in Utah and California
- Most of the power is purchased by CA utilities

Foreign - Logan

Box Elder County

- Ogden

- Roy

- Salt Lake City

- Park City

- Rossevel Liverna

- Park County

- Carbon County

- Salina

- Emery County

Cedar Crly •

• Washington County

• Washington County

• St. George • Kanab

R&V - 16

4/9/2008

Tasks as Defined in the Contract

- Task 1. Improve Efficiencies
- Task 2. Alternative Fuels
- Task 3. Developing Technologies
- Task 4. CO₂ Capture and Sequestration
- Task 5. Carbon Trading
- Task 6. Renewable Resources

General Approach to Study

- Maintain Existing Net Output from IPP
- Efficiency Improvements Only
- Renewable Resources Displace Coal
- Purchase Power for CO₂
 Capture/Compression
- Estimate Levelized Cost of CO₂
- Provide Screening Level Only

California GHG Reduction Policies

- Executive Order S-3-05 signed June 1, 2005
 - Sets statewide GHG reduction targets for 2010, 2020, and 2050
- Global Warming Solutions Act of 2006 (AB 32)
 - Enforceable limits beginning in 2012 to cap emissions at 1990 levels by 2020, compliance with market-based mechanisms
 - Must account for GHG emissions attributable to imported electricity consumed within the state
- Senate Bill 1368 signed September 29, 2006
 - CEC & California Public Utilities Commission (CPUC)
 establish 1,100 lbs/MWh GHG emission performance
 standard for new long-term power purchase agreements

BUILDING A WORLD OF DIFFERENCE®

GHG Emissions Trading Programs **Task** 5

International, National, Regional, and State (California) Programs

B&V - 20

"Kyoto Protocol" (a.k.a. International GHG Reduction Treaty)

Developed (Annex I) countries to reduce emissions of six greenhouse gases 5.2% below 1990 levels by 2008 - 2012

Kyoto Protocol Participation

- Signed and ratified
- Signed, ratification pending
- Signed, ratification declined
- No position

Flexibility Mechanisms

- Emissions Trading
- Joint Implementation
- Clean Development Mechanism

European Union ETS

- Collective commitment by 27 countries under Kyoto to achieve 8% reduction in GHG emissions from 1990 levels
- ETS to be implemented in three phases:
 - 2005-2008 trial "warm-up" phase
 - 2008-2012 Kyoto compliance phase
 - 2013 to 2020 Post Kyoto commitment

European Union (EU) ETS: Lessons Learned in Phase I

- National Allocation Plans
 - Lack of accurate inventory of emissions
 - Overallocation of allowances
 - Inconsistencies in definition of "covered installation"
 - Allocations subject to political influence
- Result: Market failure CO₂ allowance prices declined from €30 to €0.1 per ton

EU ETS Lessons Learned

- Accuracy of emissions data
 - Accounting and monitoring
- Sufficient scarcity to force investments and trading
- Complexity and transparency of trading program
 - Minimization of political interference
- Time horizon for compliance
 - Banking/transition between phases
 - Early reductions and compliance planning

IP12_002446

Federal GHG Legislation

- Multitude of proposed legislative bills seeking 60% - 90% reductions in GHG emissions over next three to four decades
- Key Issues/Differences
 - Carbon Tax vs. Market-Based Trading
 - Point of Regulation
 - Allocation vs. Auction of Allowances
 - Economy Safety Valve
 - Offsets
 - States Pre-emption
 - International Linkage and Developing Country Participation

Congressional GHG Bills

Carbon Tax

- Levy upstream on fuel's carbon content
- costs of electricity and energy-intensive goods Increased fuel costs pass along to increase
- Energy-saving behaviors encouraged, shift to lower carbon fuels
- Revenues used to reduce/replace other taxes (i.e., income)
- Price volatility risks and administrative burdens alleviated

P

Regional GHG Initiatives

Midwest GHG Reduction Accord multi-sector reduction target 60%-80% below current levels

emissions in 2009, Initiative - caps Regional GHG 10% reduction power plant 2015-2019

observer

Greenhouse Gas 🖂 RGGI-

Accord - Observer

Reduction

Initiative -

Observer

RGGI

Reduction Accord **Greenhouse Gas**

Initiative

Western

Climate

Western

Climate

Midwestern

Midwestern

Regional GHG Initiative

Initial Auctions _____

September 10, 2008 and December 17, 2008

Phase 1 —— ---- 2009 – 2014

Stabilize Power Sector Emissions

Fossil Fuel Generators of ≥ 25 MW 188 million ton CO₂ Regional Cap State Allocation of Allowances 3 Year Compliance Period

Phase II —— ······ 2015 - 2018

Reduce Power Sector Emissions

2.5% Annual Decline

2018 ------

Annual Emissions Budget 10% Smaller than 2009

Western Climate Initiative Timeline

Goal to Establish Economy-wide Program to Achieve Aggregate Emissions Reductions of CO₂, CH₄, N₂O, HFCs, PFCs, and SF₆ 15 percent below 2005 levels by 2020

California Global Warming **Solutions Act**

AB 32 Emissions Trading

AB32 Timeline

Ja

July 1, 2007 ——	Early Action Measures for Implementation pre-2010 Adopted
anuary 1, 2008 —— · · · ·	Mandatory GHG Emissions Reporting Adopted
During 2009 —— · · · ·	Emission Reductions and Implementation

January 1, 2009 – Plan to be adopted for how emissions reductions will be achieved

During 2009 – Language to implement plan drafted

During 2010 —— Early Action Measures Take Effect & Continued Rulemaking

January 1, 2011 — Completion of Major Rulemaking Activities

January 1, 2012 —— ····· GHG Rules & Market Mechanisms Take Effect

Deadline for Achieving 2020 GHG Emissions Cap

Electricity Sector Point of Regulation

- Retail Providers
- Deliverer / First Seller
- In-State Generators
- Hybrid Retail/Generator

IP12_002454

CA Trading Program - Elements and Considerations

- Distribution of Allowances
 - Allocation vs. Auction
 - Timing and Frequency
- New Entrants
- Safety Valve
- Offsets
- Early Actions

CPUC/CEC Electricity Sector Recommendations

- Scope plan requirements at level of all costeffective energy efficiency in the State
- Go beyond 20% renewable energy
- Move forward with multi-sector cap and trade system that includes electricity sector
- Deliverers of electricity as point of regulation
- Mix of allocation and auctioning of allowances

IPP Efficiency Improvements

Task 1

Approach to Task 1

- Design and Operating Data Collection
- 2 Day Site Visit; 32 Projects Identified
- 32 Projects Screened and Categorized
 - Capital Improvements
 - Maintenance Repair/Replace Strategies
 - Operations Support Systems
 - Operations Practices (not considered)
- Net Benefit Analysis of 18 Projects (@ \$20 and \$40 per ton)
- Project Report and Presentation

IPP - Limited Heat Rate Reduction Opportunity

Maximum CO₂ Reduction Opportunity (@ \$40/ton)

32,000 ton/yr from Currently Planned Projects

+

142,000 ton/yr with a Capital Cost of \$45.5M

=

- 172,000 ton/yr
- Rate reduced from 1,950 to 1,925 lb_m/MWh (1.3%)
- 3% of the way to the benchmark of 1,100 lb_m/MWh

Six Planned Projects

• 32,000 ton/yr from Currently Planned Projects

Project Description	CO ₂ Reduction (ton/yr)
Closed Loop Combustion Optimization System	18,719
Cooling Tower Modifications (Further study required)	0
Replace Primary AH Baskets (Benefit incl in #21 PA Seals)	0
Generator Rewind	3,704
Compressed Air Audit & Repair/Replacement	5,141
Modify Pulverizers w/ Rotating throat and Static Classifiers	4,445
Total	32,008

Eight New Projects Viable @ \$40/ton CO₂ Cost

142,000 ton/yr with a Capital Cost of \$45.5M

Project Description	Est Capital Cost	CO ₂ Reduction (ton/yr)	CO ₂ Benefit (\$/yr)	Heat Rate Reduction (Btu/kWh)	Heat Rate Benefit (\$/yr)	Aux load benefit (MW)	Net Benefit (\$/yr)	Breakeven Cost (\$/tonCO ₂)
Modification of PA Air Heater Sector Plates								<u> </u>
and Installation of Duplex Sealing System	\$418,000	26,501	\$1,060,036	6	\$423,495	2.40	\$1,457,575	\$0
Upgrade IPT Steam Path	\$13,333,000	41,597	\$1,663,874	29	\$664,735	0.00	\$1,273,714	\$0
Sliding Pressure Operation	\$0	14,798	\$591,922	10	\$236,479	0.00	\$832,580	\$10
VFD Motor for Condensate Pumps	\$1,312,000	7,734	\$309,341	0	\$123,585	1.04	\$330,149	\$0
Cycle Isolation Audit & Valve Repair/Replacement	\$120,000	4,160	\$166,387	3	\$66,473	0.00	\$224,435	\$0
LP Turbine Upgrade One Hood	\$27,000,000	40,706	\$1,628,237	28	\$650,497	0.00	\$130,229	\$29
Upgrade BFPT (Blades and Seals)	\$2,000,000	4,245	\$169,802	3	\$67,838	0.00	\$78,838	\$22
High Efficiency Motor for Coal Pulverizers	\$1,360,000	2,422	\$96,891	0	\$38,709	0.33	\$27,484	\$37
Summary Total (Net Benefit >0 Only)	\$45,543,000	142,162	\$5,686,491	79	\$2,271,811	3.8	\$4,355,006	

Five New Projects Viable @ \$20/ton CO₂ Cost

95,000 ton/yr with a Capital Cost of \$15.2M

Project Description	Est Capital Cost	CO ₂ Reduction (ton/yr)	CO ₂ Benefit (\$/yr)	Heat Rate Reduction (Btu/kWh)	Heat Rate Benefit (\$/yr)	Aux load benefit (MW)	Net Benefit (\$/yr)	Breakeven Cost (\$/tonCO ₂)
Modification of PA Air Heater Sector Plates	#440.000	00.504	Φ C 00 040		# 400.405	0.40	4007.557	40
and Installation of Duplex Sealing System	\$418,000	26,501	\$530,018	6	\$423,495	2.40	\$927,557	\$0
Upgrade IPT Steam Path	\$13,333,000	41,597	\$831,937	29	\$664,735	0.00	\$441,777	\$0
Sliding Pressure Operation	\$0	14,798	\$295,961	10	\$236,479	0.00	\$536,619	\$10
VFD Motor for Condensate Pumps	\$1,312,000	7,734	\$154,670	0	\$123,585	1.04	\$175,479	\$0
Cycle Isolation Audit & Valve Repair/Replacement	\$120,000	4,160	\$83,194	3	\$66,473	0.00	\$141,242	\$0
Upgrade BFPT (Blades and Seals)	\$2,000,000	4,245	\$84,901	3	\$67,838	0.00	-\$6,063	\$22
High Efficiency Motor for Coal Pulverizers	\$1,360,000	2,422	\$48,446	0	\$38, 709	0.33	-\$20,961	\$37
LP Turbine Upgrade One Hood	\$27,000,000	40,706	\$814,119	28	\$650,497	0.00	-\$683,890	\$29
Summary Total <i>(Net Benefit >0 Only)</i>	\$15,183,000	94,789	\$1,895,780	48	\$1,514,767	3.4	\$2,222,674	

Tasks 2 and 6 Renewable Resources

IP12_002464

Renewable Energy Options

Geothermal feedwater heating

Geothermal power

Solar thermal feedwater heating

Solar thermal power

Wind

Hydro

Co-firing – both biomass and natural gas

Geothermal

IPP lies in a promising geothermal area

Stand-alone geothermal power generation

Geothermal

- thermodynamically feasible for feedwater heating Geothermal resource near IPP does not have sufficient temperature/flow rate to be
- One identified area is feasible for geothermal power production (binary cycle)
- May already be under development by Raser **Technologies**

8

Solar

B&V analyzed the potential for

Solar thermal feedwater heating

Stand-alone solar thermal power generation Assumed parabolic trough technology

Solar

- Solar thermal feedwater heating
- Hot working fluid heats feedwater, reducing extraction steam needed
- Solar field would be located near IPP
- Solar thermal electric
- Complete power block required
- Solar fields located in area of flat terrain near transmission

Wind

Intermittent resource (CF ≈ 29%)

B&V - 50

Hydro

- Limited hydro opportunities
- Best potential site is the upper Sevier River
- Significant opposition to development would be expected

Others

Small potential for anaerobic digestion and landfill

AD potential for 5 to 8 MW

• Further study needed to quantify cost and potential Not known if methane reduction credits are eligible

Minimal potential for landfill gas

Summary

Renewable Energy Options Comparison.

Option	Near-Term Lev. Cost of CO ₂ Reduction (\$/ton)	Near-Term Potential CO ₂ Reduction (ton/yr)	First Year Available	Near-Term Percent IPP CO ₂ Reduction	Long-Term Percent IPP CO ₂ Reduction
Geothermal Power	136	102,000 (Capacity = 15 MW)	2012	0.7%	0.7%
Solar Power	230	186,000 (Capacity = 100 MW)	2012	1.3%	13.0%
Solar Feedwater Heating	135	104,000 $(Capacity = 50 MW)$	2010	0.7%	1.5 to 3.0%
Wind	91	988,000 $(Capacity = 400$ $MW)$	2011	7.0%	21.2%
Hydro	111	64,000 (Capacity = 15 MW)	2013	0.5%	0.8%

IP12_002473

:B&V - 53

Alternative Fuels

- Looked at four different co-firing options:
 - 1% (direct blend)
 - 10% (separate injection)
 - 20% (new burners installed)
 - 10% natural gas (new igniters installed)

Alternative Fuels

Alternative	Fuel	Quantities.

	Heat Input (MBtu/yr)*	Approximate Quantity
1% biomass	1,406,000	220,000 wet tons/yr
10% biomass	14,130,000	2,100,000 wet tons/yr
20% biomass	28,490,000	4,100,000 wet tons/yr
10% natural gas	14,160,000	13,800 million standard cubic feet (scf)/yr

Based on average IPP generation from 2006 and 2007. Considers Net Plant Heat Rate reduction that occurs by co-firing alternative fuels with coal.

Alternative Fuels

Co-Firing	Options	Comparison	(With	CO ₂ Penalty).
- -	- I	1	(– - – –	<u>_</u>

	Levelized Cost of CO ₂ Reduction (\$/ton)			O ₂ Reduction (/yr)	Percent IPP CO ₂ Reduction		
	With CO ₂ Penalty	Without CO ₂ Penalty	With CO ₂ Penalty	Without CO ₂ Penalty	With CO ₂ Penalty	Without CO ₂ Penalty	
1% Biomass	41	35	124,000	146,000	0.9%	1.0%	
10% Biomass	69	48	1,020,000	1,460,000	7.5%	10.0%	
20% Biomass	80	48	1,750,000	2,900,000	12.0%	20.0%	
10% Natural Gas	75	75	496,000	496,000	3.5%	3.5%	

Note: Penalty accounts for the CO_2 emitted during the harvesting, processing, and transportation of biomass fuels, as required under CA Senate Bill 1368, section 8341.

Carbon Dioxide Capture and Storage Project Life Cycle Stages

CAPTURE

Pre- or Post- Combustion Exhaust Gas Removal and Compression

TRANSPORT

Delivery from Capture Source to Injection Well

INJECTION AND STORAGE

Subsurface Injection Storage and Long-Term Stewardship

Capture Project

Stationary Source Siting, Permitting and Operation

Transport Project

Pipeline Routing. Permitting and Operation

Injection and Storage Project

Site Characterization. Permitting, Operation and Closure

- Available technologies exist for capturing CO₂ from fossil power plants
- Several unproven technologies show promise
- No US power plants currently capturing significant percentage (>15%) of CO₂ generated
- Costs to capture CO₂ are high for all processes

Three Categories of Capture Processes

- Post-Combustion Capture
- Large volumes of flue gas and CO₂
- Processes not proven at scale
- Pre-Combustion Capture
- <u>GCC</u>
- Oxy-Fuel Combustion
- Not Considered Further

Post-Combustion Processes

Amine solvent

- Proven technology at smaller scale
- Chemical solvent, typically monoethanolamine (MEA)

Ammonia solvent

Similar configuration to amine

B&V - 62

Simplified Post-Combustion Process

Flue Gas

Chilled Ammonia Solution

- Technology under development by Alstom and EPRI
- Similar to amine absorber/stripper, but operates at lower temperature

- Flue gas chilled to 32-50° F for high capture efficiency and low NH₃ emission
- Chilling flue gas also reduces volume and increases CO₂ concentration (due to H₂O removal)
- 1.7 MW pilot scale plant at We Energies Pleasant Prairie Station (2008 Operation)

B&V - 64

 AEP and Alstom announced plans to install 10 MW pilot at Mountaineer Plant in W. Va.

IPP Performance Estimate for CO₂ Capture.

	Amine	Ammonia
Flue Gas to CO ₂ Capture, percent	68	70
CO ₂ in Flue Gas from Power Plant, tons per hour (tph)	1,755	1,755
CO ₂ Captured, tph	958	996
CO ₂ Captured, percent	54.6	56.8
CO ₂ to Atmosphere, tph	797	759
Net Power without CO ₂ Capture, MW	1,800	1,800
Net Power from PC Units with CO ₂ Capture, MW	1,460	1,387
CO ₂ emitted, pounds per megawatt-hour (lb/MWh)	1,092	1,094
Additional Cooling Water Makeup from River, gallons per		
minute (gpm)	4,260	2,252

Amine and Ammonia Cost Comparison

Capital and Operating Costs (2008 US\$).							
	Amine	Ammonia					
CCC Direct Capital Cost (\$million)	1,400	1,300					
CO ₂ Transport Direct Cost (\$million)	470	470					
Total Direct Cost (\$million)	1,870	1,770					
Owner's Cost at 40% of Direct (\$million)	748	708					
Total Capital Cost (\$million)	2,618	2,478					
O&M Cost							
Fixed (\$million/year)	2	2					
Variable (\$million/year)	29.2	37.5					

Risks and Liabilities

Key issues and challenges of CCS regulation

- Ecological and health safety risks
- Regulatory agencies' jurisdiction
- Classification of CO₂
- Ownership and property rights
- Long-term post-closure assurance
- Public acceptance

Human health and ecological risks

Health Risks

- No physiological effects up to 1% (10,000 ppm)
- 1 − 3% adaptation
- 3 5% respiratory rate and discomfort
- > 5% impairment of physical and mental abilities, loss of consciousness
- > 10% rapid loss of consciousness, coma, death

Ecological Risks

- Plants more tolerant than animals
- Minimal impacts from small scale, short-term gas leaks
- Persistent leaks could suppress respiration in root zone, result in soil acidification, lower pH in aquatic ecosystems
- Catastrophic releases (20-30%)
 can kill vegetation and animals

Regulatory agencies' jurisdictions

Different federal, state, and local agencies responsible for ensuring materials are captured, handled, transported, injected, and stored in a safe and appropriate manner

Federal Agencies

- Environmental Protection Agency
- DOT Office of Pipeline Safety
- Minerals Management Service
- Occupational Safety and Health Administration

State Agencies

- Public Utility and Oil & Gas Commissions
- Environmental & Natural Resource Agency
- Department of Transportation

Local Authorities

Planning & Zoning

Key issues and challenges

Classification of CO₂

- Commodity
- Pollutant
- Waste
- Hazardous / Dangerous
- Non-hazardous

Key Issues & Challenges

Ownership and Property Rights

- Surface
 - Access
 - Easements
- Subsurface
 - Minerals
 - Formations
 - Pore space

- Personal property
 - \bullet CO₂
 - Credits
- Legal Doctrines
 - Capture
 - Eminent Domain
 - Injuries and Damages

Long-term post-closure assurance

- Intergenerational regulation
- Transfer long-term risk liability to government / public
- Responsibility for orphaned sites
- Monitoring for migration and leakage
- Accidental release liability and remediation
- Global risks of leakage and releases
- Longevity of institutions and transfer of knowledge

B&V - 73

Public acceptance

- Demonstration and confidence in geologic sequestration
- NIMBY / NUMBY issues:
- Decrease in property values
- Environmental justice
- Accidents and safety hazards
- Level and role of public and NGO participation in siting and permitting
- Continued acceptance of costs and risks over time

Task 5 Economic Impacts of CO₂ Cap and Trade Programs

Lieberman-Warner
Western Climate Initiative
AB 32

Key drivers for baseline generation additions

IP12_002496

IPP May Control CO₂ or Purchase Allowances

- Economically, IPP should control emissions only to the point where the incremental cost of CO2 control reaches the price of CO₂ allowances
- generator that makes the region meet its cap markets The price of allowances in a cap and trade program should be based on the cost of control by the last TOTO DOST-DOST-DOSTONE
- Cap and trade induces use of least-cost CO₂ control measures first
- level and the cost of control for all the generators in the The price of allowances is a direct function of the cap trading area

CO₂ avoidance / abatement alternatives

- New combined cycle capacity in place of new coal capacity
- New combined cycle capacity coupled with wind generation in place of new coal capacity
- New nuclear capacity in place of new coal capacity
- IGCC capacity with capture and sequestration in place of new coal capacity
- New combined cycle capacity to replace existing inefficient coal generation
- Combined cycle capacity dispatches ahead of existing coal capacity reducing coal capacity factors
- Post-combustion control of existing PC capacity
- IGCC with capture in place of new combined cycle capacity

CA - What abatement measures will be needed?

Assuming all current domestic and imported coal except for IPP is replaced by gas generation, and renewable generation is increased to 20%, results in CO_2 emissions 19% above the AB 32 cap proposed for 2020.

Implications for IPP

- If AB 32 remains the only program applicable to IPP, it may want to consider taking actions that cost less than approximately \$40 per ton to remove CO₂
- Implementation of the WCI may reduce the price of CO₂ allowances but only slightly
- proposed caps, the price of CO₂ allowances is likely to If the Lieberman-Warner bill is enacted with currently cause IPP to consider adding carbon capture and sequestration
- cycle IPP as combined cycle generators start dispatching In all cases, there will likely be pressure to increasingly ahead of it due to the cost of CO₂

BUILDING A WORLD OF DIFFERENCE®

Comparison of Levelized Cost of CO₂

	Scenario	Capital Cost (\$1000)	Operating Cost (\$1000/yr)	CO2 Reduction (tons/year)	Levelized Cost o CO2 (\$/ton CO2)
1	Modification of PA Air Heater and Seals	418	-	26,501	О
1	Sliding Pressure Operation	0		14,798	0
dome	VFD Motor for Condensate Pumps	1,312	***	7,734	0
1	Cycle Isolation Audit and Valve Repair/Replacement	120	-	4,160	0
1	Upgrade IPT Steam Path	13,333		41,597	10
1	Upgrade BFPT (Blades and Seals)	2,000		4,245	22
1	"High Efficiency Motor for Coal Pulverizers"	1,360		2,422	29
1	LP Turbine Upgrade One Hood	27,000		40,706	37
2	1 Percent Biomass	1,206	1,100	124,000	41
4	Amine CO2 Scrubbing	2,619,000	31,200	7,972,000	59
4	Ammonia CO2 Scrubbing	2,479,000	37,500	8,289,000	63
2	10 Percent Biomass	314,280	1,300	1,020,000	69
2	10 Percent Natural Gas	17,640	1,100	496,000	75
2	20 Percent Biomass	549,720	1,610	1,750,000	80
6	Wind	800,000	20,700	988,000	91
6	Hydro	42,520	550	64,000	111
6	Solar Feedwater Heating	135,000	2,900	104,000	135
6	Geothermal Power	76,500	6,100	102,000	136
6	Solar Power	420,000	5,800	186,000	230

IP12_002502

Key Results and Conclusions

- IPP is a Best-in-Class Facility
- GHG ETS Not Fully Defined
- Significant Reductions of CO₂ from IPP Require
- Large Scale Capture Ready 2012-2015
- Large Scale Sequestration Ready 2015-2020
- Viable Projects Available Today to Lower GHG Footprint

Conclusions

- Some efficiency improvements appear to be viable regardless of CO₂ reduction requirements
- Efficiency improvements do not have a significant impact on CO₂ emissions
- Only CCS and/or carbon trading have the capability to reach the target of 1,100 lb/MWh
- <~\$60/ton will provide a better option than CCS Carbon trading programs with CO₂ costs at
- SCREENING LEVEL ANALYSIS ONLY